ISSN: 2332-0702

Zeitschrift für Mundhygiene und Gesundheit

Offener Zugang

Unsere Gruppe organisiert über 3000 globale Konferenzreihen Jährliche Veranstaltungen in den USA, Europa und anderen Ländern. Asien mit Unterstützung von 1000 weiteren wissenschaftlichen Gesellschaften und veröffentlicht über 700 Open Access Zeitschriften, die über 50.000 bedeutende Persönlichkeiten und renommierte Wissenschaftler als Redaktionsmitglieder enthalten.

Open-Access-Zeitschriften gewinnen mehr Leser und Zitierungen
700 Zeitschriften und 15.000.000 Leser Jede Zeitschrift erhält mehr als 25.000 Leser

Abstrakt

A Novel Advance for Orthodontic Landmarks Recognition Using an Artificial Neural Network

Ali Mohammad Saghiri

Background: Cephalometric analysis is the clinical application of dental cephalometry. It is investigation of the dental and skeletal connections of a human skull. Cephalometric analysis is one of most difficult part for orthodontic and orthogenetic surgical treatments. Most of time landmark identifications is time consuming and has high dependency to operator. the aim of current investigation is to find a new approach for orthodontic landmarks identification using an artificial neural network to enhance identification of cephalometric landmarks.

Materials and Methods: 110 lateral cephalograms were randomly selected from orthodontic private office and spited in two parts, First for training artificial neural network (ANN) and the remain cephalograms used for the evaluation of the software. In blind manner we asked three orthodontists to locate 5 landmarks on software and used these information for training. After that, our algorithm identified 5 landmarks on rest of cephalograms automatically. Eventually the result of both Algorithm evaluation and orthodontists landmarks for second part were compared with each other by "paired T test".

Results: Current Investigation showed, in four points out of five, the mean average distance between the point determined by ANN and the orthodontist’s points, was less than 1mm accuracy for all four landmarks.

Conclusion: With the limitation of this study, the results confirmed that that the landmark locating errors by ANN algorithms has near enough accuracy to realization, therefore it could be a proper substitute for manual method.

Haftungsausschluss: Dieser Abstract wurde mit Hilfe von Künstlicher Intelligenz übersetzt und wurde noch nicht überprüft oder verifiziert.