ISSN: 2157-7617

Zeitschrift für Geowissenschaften und Klimawandel

Offener Zugang

Unsere Gruppe organisiert über 3000 globale Konferenzreihen Jährliche Veranstaltungen in den USA, Europa und anderen Ländern. Asien mit Unterstützung von 1000 weiteren wissenschaftlichen Gesellschaften und veröffentlicht über 700 Open Access Zeitschriften, die über 50.000 bedeutende Persönlichkeiten und renommierte Wissenschaftler als Redaktionsmitglieder enthalten.

Open-Access-Zeitschriften gewinnen mehr Leser und Zitierungen
700 Zeitschriften und 15.000.000 Leser Jede Zeitschrift erhält mehr als 25.000 Leser

Indiziert in
  • CAS-Quellenindex (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Online-Zugriff auf Forschung in der Umwelt (OARE)
  • Öffnen Sie das J-Tor
  • Genamics JournalSeek
  • JournalTOCs
  • Ulrichs Zeitschriftenverzeichnis
  • Zugang zu globaler Online-Forschung in der Landwirtschaft (AGORA)
  • Zentrum für Landwirtschaft und Biowissenschaften International (CABI)
  • RefSeek
  • Hamdard-Universität
  • EBSCO AZ
  • OCLC – WorldCat
  • Proquest-Vorladungen
  • SWB Online-Katalog
  • Publons
  • Euro-Pub
  • ICMJE
Teile diese Seite

Abstrakt

Artificial Intelligence for Lithology Identification through Real-Time Drilling Data

Alireza Moazzeni and Mohammad Ali Haffar

In order to reduce drilling problems such as loss of circulation and kick, and to increase drilling rate, bit optimization and shale swelling prohibition, it is important to predict formation type and lithology in a well before drilling or at least during drilling. Although there are some methods for finding out the lithology such as log interpretation, there is no method for determining lithology before or during drilling by a great degree of accuracy. Determination of formation type and lithology is very complicated and no analytical method is presented for this problem so far. In this situation, it seems that artificial intelligence could be really helpful. Neural networks can establish complicated non-linear mapping between inputs and outputs. In this paper, formation type and lithology of the formation will be predicted using real-time drilling data with an acceptable accuracy, while drilling that formation using artificial neural network. 47500 sets of data from 12 wells in South Pars gas field (in south of Iran) were selected and, after data mining and quality control, were imported to artificial neural networks. Results show that neural networks can determine type of formation and lithology with near 90% accuracy.

Haftungsausschluss: Dieser Abstract wurde mit Hilfe von Künstlicher Intelligenz übersetzt und wurde noch nicht überprüft oder verifiziert.