Unsere Gruppe organisiert über 3000 globale Konferenzreihen Jährliche Veranstaltungen in den USA, Europa und anderen Ländern. Asien mit Unterstützung von 1000 weiteren wissenschaftlichen Gesellschaften und veröffentlicht über 700 Open Access Zeitschriften, die über 50.000 bedeutende Persönlichkeiten und renommierte Wissenschaftler als Redaktionsmitglieder enthalten.
Open-Access-Zeitschriften gewinnen mehr Leser und Zitierungen
700 Zeitschriften und 15.000.000 Leser Jede Zeitschrift erhält mehr als 25.000 Leser
Mickael Humphreys
Breast cancer is a significant global health concern, and early detection plays a crucial role in improving patient outcomes. Mammography, a widely employed imaging technique for breast cancer screening, can benefit from advancements in artificial intelligence (AI) technologies. This paper presents a comprehensive review of the utilization of AI in the detection of breast cancer through mammography. The review encompasses various AI approaches, including convolutional neural networks (CNNs), deep learning architectures, and machine learning algorithms, which have demonstrated substantial potential in enhancing the accuracy and efficiency of breast cancer detection. By analyzing a diverse range of studies, this paper highlights the key contributions, challenges, and future prospects of AI-powered breast cancer detection in mammography. The integration of AI techniques has the potential to revolutionize mammographic analysis, enabling earlier and more accurate diagnoses, ultimately leading to improved patient care and prognosis