Unsere Gruppe organisiert über 3000 globale Konferenzreihen Jährliche Veranstaltungen in den USA, Europa und anderen Ländern. Asien mit Unterstützung von 1000 weiteren wissenschaftlichen Gesellschaften und veröffentlicht über 700 Open Access Zeitschriften, die über 50.000 bedeutende Persönlichkeiten und renommierte Wissenschaftler als Redaktionsmitglieder enthalten.

Open-Access-Zeitschriften gewinnen mehr Leser und Zitierungen
700 Zeitschriften und 15.000.000 Leser Jede Zeitschrift erhält mehr als 25.000 Leser

Indiziert in
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Genamics JournalSeek
  • SafetyLit
  • Zugang zu globaler Online-Forschung in der Landwirtschaft (AGORA)
  • Zentrum für Landwirtschaft und Biowissenschaften International (CABI)
  • RefSeek
  • Hamdard-Universität
  • EBSCO AZ
  • OCLC – WorldCat
  • CABI-Volltext
  • Direkte Kabine
  • Publons
  • Genfer Stiftung für medizinische Ausbildung und Forschung
  • Euro-Pub
  • ICMJE
Teile diese Seite

Abstrakt

Assessing the Impact of Misclassification when Comparing Prevalence Data: A Novel Sensitivity Analysis Approach

Ninet Sinaii, Sean D Cleary and Pamela Stratton

Background:
A simple sensitivity analysis technique was developed to assess the impact of misclassification and verify observed prevalence differences between distinct populations.

Methods:
The prevalence of self-reported comorbid diseases in 4,331 women with surgically-diagnosed endometriosis was compared to published clinical and population-based prevalence estimates. Disease prevalence misclassification was assessed by assuming over-reporting in the study sample and under-reporting in the general (comparison) population. Over- and under-reporting by 10%, 25%, 50%, 75%, and 90% was used to create a 5×5 table for each disease. The new prevalences represented by each table cell were compared by p-values, prevalence odds ratios, and 95% confidence intervals.

Results:
Three misclassification patterns were observed: 1) differences remained significant except at high degrees (>50%) of misclassification; 2) minimal (10%) misclassification negated any observed difference; and 3) with some (25-50%) misclassification, the difference disappeared, and the direction of significance changed at higher levels (>50%).

Conclusions:
This sensitivity analysis enabled us to verify observed prevalence differences. This useful, simple approach is for comparing prevalence estimates between distinct populations.

Haftungsausschluss: Dieser Abstract wurde mit Hilfe von Künstlicher Intelligenz übersetzt und wurde noch nicht überprüft oder verifiziert.