ISSN: 2155-9872

Zeitschrift für analytische und bioanalytische Techniken

Offener Zugang

Unsere Gruppe organisiert über 3000 globale Konferenzreihen Jährliche Veranstaltungen in den USA, Europa und anderen Ländern. Asien mit Unterstützung von 1000 weiteren wissenschaftlichen Gesellschaften und veröffentlicht über 700 Open Access Zeitschriften, die über 50.000 bedeutende Persönlichkeiten und renommierte Wissenschaftler als Redaktionsmitglieder enthalten.

Open-Access-Zeitschriften gewinnen mehr Leser und Zitierungen
700 Zeitschriften und 15.000.000 Leser Jede Zeitschrift erhält mehr als 25.000 Leser

Indiziert in
  • CAS-Quellenindex (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Datenbank für wissenschaftliche Zeitschriften
  • Öffnen Sie das J-Tor
  • Genamics JournalSeek
  • JournalTOCs
  • Forschungsbibel
  • Nationale Wissensinfrastruktur Chinas (CNKI)
  • Ulrichs Zeitschriftenverzeichnis
  • Elektronische Zeitschriftenbibliothek
  • RefSeek
  • Verzeichnis der Indexierung von Forschungszeitschriften (DRJI)
  • Hamdard-Universität
  • EBSCO AZ
  • OCLC – WorldCat
  • Gelehrter
  • SWB Online-Katalog
  • Virtuelle Bibliothek für Biologie (vifabio)
  • Publons
  • Euro-Pub
  • ICMJE
Teile diese Seite

Abstrakt

Case studies on Metabolomics in Disease Biomarker Discovery

Dr. Pawolski Vador

Metabolomics, a rapidly advancing field within the omics sciences, holds immense potential in the discovery of disease biomarkers. This abstract presents a collection of case studies showcasing the application of metabolomics in identifying potential biomarkers for various diseases. By utilizing mass spectrometry-based metabolomics, researchers have made significant progress in uncovering unique metabolic signatures associated with diseases, opening avenues for improved diagnostics, early detection, and personalized medicine.

The first case study focuses on cancer biomarker identification. Through the analysis of metabolite profiles in cancer patients, distinct metabolic alterations specific to different cancer types have been identified. Mass spectrometry, coupled with advanced data analysis techniques, aids in deciphering cancer-specific metabolic signatures, enabling non-invasive diagnostic tests and therapeutic monitoring.

The second case study explores metabolomics in metabolic disorders such as diabetes, obesity, and cardiovascular diseases. Metabolomics provides insights into disease mechanisms by analyzing metabolic pathways and identifying disease-associated metabolites. Mass spectrometry techniques allow for the discovery of metabolic alterations, aiding in early diagnosis and personalized treatment strategies.

The third case study delves into metabolomics in neurodegenerative diseases. By profiling metabolite changes in affected individuals, unique metabolic signatures associated with neurodegenerative diseases have been identified. Mass spectrometry-based metabolomics facilitates early detection and monitoring, shedding light on underlying pathophysiological processes and potential disease-modifying interventions.

Lastly, the fourth case study showcases metabolomics in infectious diseases. By analyzing metabolite profiles in infected individuals, researchers have identified distinct metabolic patterns associated with various pathogens. Mass spectrometry-based metabolomics reveals metabolites involved in host-pathogen interactions, immune responses, and disease progression, enhancing diagnostic accuracy and aiding in monitoring treatment efficacy.

In conclusion, metabolomics, empowered by mass spectrometry, plays a pivotal role in disease biomarker discovery. By unraveling intricate metabolic alterations associated with diseases, metabolomics offers valuable insights into disease mechanisms and facilitates improved diagnostics and personalized treatment strategies. Continued advancements in mass spectrometry techniques and data analysis algorithms will propel metabolomics forward, transforming patient care and leading to better outcomes in various diseases.

Haftungsausschluss: Dieser Abstract wurde mit Hilfe von Künstlicher Intelligenz übersetzt und wurde noch nicht überprüft oder verifiziert.