ISSN: 2278-0238

Internationale Zeitschrift für Forschung und Entwicklung in Pharmazie und Biowissenschaften

Offener Zugang

Unsere Gruppe organisiert über 3000 globale Konferenzreihen Jährliche Veranstaltungen in den USA, Europa und anderen Ländern. Asien mit Unterstützung von 1000 weiteren wissenschaftlichen Gesellschaften und veröffentlicht über 700 Open Access Zeitschriften, die über 50.000 bedeutende Persönlichkeiten und renommierte Wissenschaftler als Redaktionsmitglieder enthalten.

Open-Access-Zeitschriften gewinnen mehr Leser und Zitierungen
700 Zeitschriften und 15.000.000 Leser Jede Zeitschrift erhält mehr als 25.000 Leser

Abstrakt

CoMFA -3D QSAR APPROCH IN DRUG DESIGN

Sandip Sen, N.A.Farooqui , T.S.Easwari, Bishwabara Roy

Progress in medicinal chemistry and in drug design depends on our ability to understand the interactions of drugs with their biological targets. Classical QSAR studies describe biological activity in terms of physicochemical properties of substituents in certain positions of the drug molecules. The detailed discussion of the present state of the art should enable scientists to further develop and improve these powerful new tools. Comparative Molecular Field Analysis (CoMFA) is a mainstream and down-toearth 3D QSAR technique in the coverage of drug discovery and development. Even though CoMFA is remarkable for high predictive capacity, the intrinsic data-dependent characteristic still makes this methodology certainly be handicapped by noise. It's well known that the default settings in CoMFA can bring about predictive QSAR models, in the meanwhile optimized parameters was proven to provide more predictive results. Accordingly, so far numerous endeavors have been accomplished to ameliorate the CoMFA model’s robustness and predictive accuracy by considering various factors, including molecular conformation and alignment, field descriptors and grid spacing. In the present article we are going to discuss the basic approaches of CoMFA in drug design.

Haftungsausschluss: Dieser Abstract wurde mit Hilfe von Künstlicher Intelligenz übersetzt und wurde noch nicht überprüft oder verifiziert.