Unsere Gruppe organisiert über 3000 globale Konferenzreihen Jährliche Veranstaltungen in den USA, Europa und anderen Ländern. Asien mit Unterstützung von 1000 weiteren wissenschaftlichen Gesellschaften und veröffentlicht über 700 Open Access Zeitschriften, die über 50.000 bedeutende Persönlichkeiten und renommierte Wissenschaftler als Redaktionsmitglieder enthalten.

Open-Access-Zeitschriften gewinnen mehr Leser und Zitierungen
700 Zeitschriften und 15.000.000 Leser Jede Zeitschrift erhält mehr als 25.000 Leser

Abstrakt

Computational Methods for Improving Genetic Therapies for Duchene Muscular Dystrophy

Georgios Kargas, Anastasia Krithara, Anastasios Nentidis, George Palliouras, Michael Filippakis

Genetic engineering involves different techniques to intentionally modify genetic material (primarily DNA) in order to alter, restore, or boost shape or function. Established in the late 20th century, recombinant DNA technologies include recombination of different strands of DNA, usually using bacteria (such as Escherichia coli), bacteriophages (such as λ phage) or by way of simple microinjection. In recent years, modern techniques to design and create -literally to engineer- new life forms, typically referred to as synthetic biology, have supplemented these conventional methods [1].

A flexible and efficient gene therapy technique is precision genome editing. The area has been subject to continuous developments since the introduction of CRISPR/Cas systems for genome editing [2]. This new biotechnology technique includes the development of a site-specific double strand break (DSB) accompanied by two key forms of repair mechanisms: non-homologous end-joining and homology directed-repair [3].

In the current work, we broke down and understood the main components of the prime editing technique. An automated approach is required for advancing our understanding of the evolution and diversity of prime editing and for finding new candidates for genome engineering. We used Duchenne Muscular Dystrophy (DMD) as a case study for this proposed approach. More specifically, we applied machine learning algorithms over prime editing data for the genetic disease of DMD. We designed multiple prime editing guide RNAs (pegRNAs) for the potential correction of the mutated exon 44 of DMD gene [4,5].

Haftungsausschluss: Dieser Abstract wurde mit Hilfe von Künstlicher Intelligenz übersetzt und wurde noch nicht überprüft oder verifiziert.