Unsere Gruppe organisiert über 3000 globale Konferenzreihen Jährliche Veranstaltungen in den USA, Europa und anderen Ländern. Asien mit Unterstützung von 1000 weiteren wissenschaftlichen Gesellschaften und veröffentlicht über 700 Open Access Zeitschriften, die über 50.000 bedeutende Persönlichkeiten und renommierte Wissenschaftler als Redaktionsmitglieder enthalten.

Open-Access-Zeitschriften gewinnen mehr Leser und Zitierungen
700 Zeitschriften und 15.000.000 Leser Jede Zeitschrift erhält mehr als 25.000 Leser

Indiziert in
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Öffnen Sie das J-Tor
  • Genamics JournalSeek
  • Akademische Schlüssel
  • Forschungsbibel
  • Nationale Wissensinfrastruktur Chinas (CNKI)
  • Zugang zu globaler Online-Forschung in der Landwirtschaft (AGORA)
  • Elektronische Zeitschriftenbibliothek
  • RefSeek
  • Hamdard-Universität
  • EBSCO AZ
  • OCLC – WorldCat
  • SWB Online-Katalog
  • Virtuelle Bibliothek für Biologie (vifabio)
  • Publons
  • Genfer Stiftung für medizinische Ausbildung und Forschung
  • Euro-Pub
  • ICMJE
Teile diese Seite

Abstrakt

Engineered In Vitro Feed-Forward Networks

Anupama Natarajan1, Thomas B. DeMarse2, Peter Molnar3, and James J. Hickman1

Microelectrode arrays (MEAs) are a promising new method for high throughput neuronal assays. These arrays permit non-invasive, detailed optical and multichannel electrophysiological interrogation of functional neuronal networks for drug development or neurotoxicity assessment. There has also been an effort by a number of groups to develop in vitro analogues of in vivo brain circuitry or physiological systems to serve as well defined models of in vivo tissue. However, a key hurdle in these efforts has been the ability to define and constrain the directionality of  pathways within these systems. This issue is particularly relevant during the recreation of in vivo brain architectures that communicate through defined pathways, often with specific directionality. In this paper, we demonstrate a line/ gap topology that promotes the growth of axonal directionally between neurons that have been engineered into a living analogue of a feed-forward neural architecture. The effective connectivity of this architecture was estimated from neural activity measured by a multichannel microelectrode array and quantified using conditional Granger causality analysis. Plasticity was then induced to determine whether 1) LTP/LTD was supported in this novel architecture and 2) whether plasticity differed from random network controls. We show that this method promotes unidirectional feed-forward relative to opposing feedback pathways in spontaneously active networks. This study also represents the first attempt to use the Granger causality metric for the assessment of the activity of a biological neuronal network in which connectivity is highly defined.

Haftungsausschluss: Dieser Abstract wurde mit Hilfe von Künstlicher Intelligenz übersetzt und wurde noch nicht überprüft oder verifiziert.