ISSN: 2157-7617

Zeitschrift für Geowissenschaften und Klimawandel

Offener Zugang

Unsere Gruppe organisiert über 3000 globale Konferenzreihen Jährliche Veranstaltungen in den USA, Europa und anderen Ländern. Asien mit Unterstützung von 1000 weiteren wissenschaftlichen Gesellschaften und veröffentlicht über 700 Open Access Zeitschriften, die über 50.000 bedeutende Persönlichkeiten und renommierte Wissenschaftler als Redaktionsmitglieder enthalten.

Open-Access-Zeitschriften gewinnen mehr Leser und Zitierungen
700 Zeitschriften und 15.000.000 Leser Jede Zeitschrift erhält mehr als 25.000 Leser

Indiziert in
  • CAS-Quellenindex (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Online-Zugriff auf Forschung in der Umwelt (OARE)
  • Öffnen Sie das J-Tor
  • Genamics JournalSeek
  • JournalTOCs
  • Ulrichs Zeitschriftenverzeichnis
  • Zugang zu globaler Online-Forschung in der Landwirtschaft (AGORA)
  • Zentrum für Landwirtschaft und Biowissenschaften International (CABI)
  • RefSeek
  • Hamdard-Universität
  • EBSCO AZ
  • OCLC – WorldCat
  • Proquest-Vorladungen
  • SWB Online-Katalog
  • Publons
  • Euro-Pub
  • ICMJE
Teile diese Seite

Abstrakt

Enhancing the Spatial Variability of Soil Salinity Indicators by Remote Sensing Indices and Geo-Statistical Approach

Solafa Babiker, Elbasri Abulgasim and Hamid HS

Soil salinization is considered limiting factor for crop production and land management for dry land in Sudan, its spatial variation is affected by different factors of soil properties, vegetation and environment hence its interaction formulate the planning for successful sustainable agriculture in salt affected soils. This study aims to evolve the spatial prediction of soil salinity indicators by integrated remote sensing indices and geo-statistical cokriging model. Soil samples were collected from 476 square kilometer area in salt affected area, the samples were analyzed following standard procedures for electrical conductivity, sodium adsorption ratio, hydrogen ions and saturation percentage. Information of vegetation status identified by Normalized Difference Vegetation Index (NDVI) and soil salinization by Salinity index and brightness index were used and utilized for prediction of the soil parameters variability by cokriging model. It was found that the method was resulted in high accuracy based on RMSE and enhances the soil spatial variability assessment and provides significant interaction of different variables and indices in the landscape.

Haftungsausschluss: Dieser Abstract wurde mit Hilfe von Künstlicher Intelligenz übersetzt und wurde noch nicht überprüft oder verifiziert.