ISSN: 2329-8863

Fortschritte in der Pflanzenwissenschaft und -technologie

Offener Zugang

Unsere Gruppe organisiert über 3000 globale Konferenzreihen Jährliche Veranstaltungen in den USA, Europa und anderen Ländern. Asien mit Unterstützung von 1000 weiteren wissenschaftlichen Gesellschaften und veröffentlicht über 700 Open Access Zeitschriften, die über 50.000 bedeutende Persönlichkeiten und renommierte Wissenschaftler als Redaktionsmitglieder enthalten.

Open-Access-Zeitschriften gewinnen mehr Leser und Zitierungen
700 Zeitschriften und 15.000.000 Leser Jede Zeitschrift erhält mehr als 25.000 Leser

Indiziert in
  • CAS-Quellenindex (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Online-Zugriff auf Forschung in der Umwelt (OARE)
  • Öffnen Sie das J-Tor
  • Akademische Schlüssel
  • JournalTOCs
  • Zugang zu globaler Online-Forschung in der Landwirtschaft (AGORA)
  • RefSeek
  • Hamdard-Universität
  • EBSCO AZ
  • OCLC – WorldCat
  • Gelehrter
  • SWB Online-Katalog
  • Publons
  • Euro-Pub
Teile diese Seite

Abstrakt

Genetic Variability and Heritability of Agronomic Traits in Faba Bean (Vicia faba l.) Genotypes Evaluated under Soil Acidity Stress With and Without Lime Application

Mesfin Tadele, Wassu Mohammed, Mussa Jarso

Faba bean is a multipurpose crop used as human food, animal feed, soil fertility restoration and income source for farmers and the country at large. However, the productivity of this crop is low as constrained by biotic and abiotic factors in which soil acidity takes the lions share in the highlands of Ethiopia. In order to estimate genetic variability on grain yield and related traits under soil acidity stress, 50 faba bean genotypes were evaluated in randomized complete block design with three replications at three locations, Holetta, Watebecha Minjaro, and Jeldu with and without lime application in 2017. The combined analysis of variance (ANOVA) over locations for each lime level showed the presence of significant differences among genotypes for agronomic traits except for the number of seeds per pod. The overall mean grain yields of tested faba bean genotypes were 62.93 (without) and 93.12 g/ 5plants (with lime). Hence, mean grain yield reductions of 32.34% were encountered due to soil acidity stress through a varied number of genotypes over locations. Computed genotypic coefficient of variations (GCV) ranged from 1.08%-23.05% and 0.94%-23.88% and phenotypic (PCV) from 1.20%-23.26% and 1.11%-24.07%, while heritability (H2) ranged from 24.63%-98.22% and 35.06%-98.45% and genetic advance as percent of the mean (GAM) from 2.0%-47.13% and 1.64%-48.89% without and with the lime application, respectively. The highest values for all components were recorded for 100 seeds weight (HSW), whereas the lowest values except for H2 were computed for days to maturity. Under both lime levels medium to high estimates of GCV, PCV, H2 and GAM were computed for HSW and the number of pod per plant and selection based on phenotypic expression of genotypes is possible to improve these traits. Selection based on mean would be successful in improving traits that have high H2. Furthermore, selection based on phenotypic performance of genotypes would be effective to improve traits that have high GAM coupled with high H2 estimates. Performances of variability components for different traits with and without lime application did not follow similar trends and higher values were recorded with lime as optimum environments allow for better genetic expression. Therefore, it is concluded that soil acidity affects the production and variability components of faba bean genotypes for yield, and yield related traits.