ISSN: 2168-9806

Zeitschrift für Pulvermetallurgie und Bergbau

Offener Zugang

Unsere Gruppe organisiert über 3000 globale Konferenzreihen Jährliche Veranstaltungen in den USA, Europa und anderen Ländern. Asien mit Unterstützung von 1000 weiteren wissenschaftlichen Gesellschaften und veröffentlicht über 700 Open Access Zeitschriften, die über 50.000 bedeutende Persönlichkeiten und renommierte Wissenschaftler als Redaktionsmitglieder enthalten.

Open-Access-Zeitschriften gewinnen mehr Leser und Zitierungen
700 Zeitschriften und 15.000.000 Leser Jede Zeitschrift erhält mehr als 25.000 Leser

Abstrakt

High Calcium MSWI Fly Ash's Mineralization Behaviour and Strengthening Technology throughout the Sintering Co-Treatment Procedure

Binbin Huang

Co-processing of MSWI-FA (fly ash from municipal solid waste incineration) during the sintering of iron ore is a potentially viable option for safe and creative use. In this research, high temperature in-situ, diffusion couple, and sintering experiments were used to study the mineralization behaviour of high calcium water-washed municipal solid waste incinerator fly ash (WM-FA) during iron ore sintering, and the related regulation method was proposed. The tumbler index of sinter was slightly lowered from 69.20% to 68.82% when 1.0 wt% WM-FA was added. When the fraction of WM-FA was increased to 2.0 weight percent, this index fell to 62.43%. Possible explanation for why WM-FA exhibited higher Its lack of mineralization properties were caused by its soft melting temperature, which was lower than the sintering mixture's [1-5]. The mineralization process both within and outside of WM-FA was greatly improved by the addition of 20 weight percent iron ore, and a significant volume of CaO•Fe2O3 liquid phase was produced. Sinter's tumbler index rose from 62.43% to 68.35%. The theoretical underpinnings for the treatment of fly ash from municipal solid waste incineration in the sintering process are provided by research findings, which have major implications for the development of the iron and steel industry as well as urban sustainability. Municipal solid waste incineration has increasingly grown in importance as a method of waste treatment thanks to advancements in waste burning technology and evaluation standards. Fly ash, which makes about 3–5–% of the waste incineration quality, will be created throughout the trash incineration process. The fly ash has been classified as hazardous waste in the majority of nations because it contains numerous dangerous compounds, including heavy metals, dioxins, and alkali. Therefore, governments all over the world are concentrating their study on ways to recycle the municipal solid waste incineration fly ash.