Unsere Gruppe organisiert über 3000 globale Konferenzreihen Jährliche Veranstaltungen in den USA, Europa und anderen Ländern. Asien mit Unterstützung von 1000 weiteren wissenschaftlichen Gesellschaften und veröffentlicht über 700 Open Access Zeitschriften, die über 50.000 bedeutende Persönlichkeiten und renommierte Wissenschaftler als Redaktionsmitglieder enthalten.

Open-Access-Zeitschriften gewinnen mehr Leser und Zitierungen
700 Zeitschriften und 15.000.000 Leser Jede Zeitschrift erhält mehr als 25.000 Leser

Indiziert in
  • CAS-Quellenindex (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Öffnen Sie das J-Tor
  • Genamics JournalSeek
  • Akademische Schlüssel
  • JournalTOCs
  • Ulrichs Zeitschriftenverzeichnis
  • Elektronische Zeitschriftenbibliothek
  • RefSeek
  • Hamdard-Universität
  • EBSCO AZ
  • OCLC – WorldCat
  • Gelehrter
  • SWB Online-Katalog
  • Virtuelle Bibliothek für Biologie (vifabio)
  • Publons
  • Euro-Pub
  • ICMJE
Teile diese Seite

Abstrakt

Major Contributors to Nitrogen Gas Plasma Sterilization

H Shintani

Many papers have been published on gas plasma sterilization. Most have been conducted by engineers and physics researchers, so microbiological and chemical aspects are insufficient or inaccurate. Gas plasma sterilization research has significantly advanced since 2008 when biologists and chemists began contributing their expertise to the effort. However, the mechanism of sterilization by gas plasma has not yet been elucidated. Based on their life spans and other characteristics, metastables and/or photons can speculated to be the most likely candidates contributing to the mechanism of gas plasma sterilization. OH and/or NO radicals may be minor contributors due to significant short period of life. Spore death can be explained by the hydration of dipicolinic acid (DPA) in the spore core. The energy of metastables and/or photons can cause the formation of pin holes in spores that allow water to penetrate into the core and hydrate the DPA. Hydrated DPA transfers to the spore surface. DPA in the spore surface was collected by extraction with water and enriched by solid phase extraction. Eluted material was vaporized, condensed, and analyzed by the reverse phase C-18 HPLC. Elution from the C-18 column was carried out with acetonitrile/water (1/4, v/v, pH 5) and detected at 235 nm and by mass spectrometry (MS). Based on a comparison of the retention time and MS fragmentation pattern with that of standard DPA, the spore surface particles were confirmed to be composed of DPA. The hydration process occurred within the spore and did not cause any structural change within the spore. Therefore the structure of spores remained almost unchanged after sterilization.