ISSN: 2155-9872

Zeitschrift für analytische und bioanalytische Techniken

Offener Zugang

Unsere Gruppe organisiert über 3000 globale Konferenzreihen Jährliche Veranstaltungen in den USA, Europa und anderen Ländern. Asien mit Unterstützung von 1000 weiteren wissenschaftlichen Gesellschaften und veröffentlicht über 700 Open Access Zeitschriften, die über 50.000 bedeutende Persönlichkeiten und renommierte Wissenschaftler als Redaktionsmitglieder enthalten.

Open-Access-Zeitschriften gewinnen mehr Leser und Zitierungen
700 Zeitschriften und 15.000.000 Leser Jede Zeitschrift erhält mehr als 25.000 Leser

Indiziert in
  • CAS-Quellenindex (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Datenbank für wissenschaftliche Zeitschriften
  • Öffnen Sie das J-Tor
  • Genamics JournalSeek
  • JournalTOCs
  • Forschungsbibel
  • Nationale Wissensinfrastruktur Chinas (CNKI)
  • Ulrichs Zeitschriftenverzeichnis
  • Elektronische Zeitschriftenbibliothek
  • RefSeek
  • Verzeichnis der Indexierung von Forschungszeitschriften (DRJI)
  • Hamdard-Universität
  • EBSCO AZ
  • OCLC – WorldCat
  • Gelehrter
  • SWB Online-Katalog
  • Virtuelle Bibliothek für Biologie (vifabio)
  • Publons
  • Euro-Pub
  • ICMJE
Teile diese Seite

Abstrakt

Membrane Bound Molecular Machines for Sensing

William Hoiles, Vikram Krishnamurthy and Bruce Cornell

This paper reports on the construction and predictive models of the Ion Channel Switch (ICS) biosensor which is capable of detecting femto-molar concentrations of target species including proteins, hormones, polypeptides, microorganisms, oligonucleotides, DNA segments, and polymers in cluttered electrolyte environments. The ICS employs an engineered tethered membrane with embedded gramicidin (gA) monomers and tethered antibody receptors. The detection of target molecules using the ICS is performed by measuring changes in the membrane conductance which is dependent on the number of gA dimers. As target molecules bind with the antibody receptors on the membrane surface, the conductance of the membrane decreases as a result of the decrease in the number of conducting gA dimers. As we show, the membrane conductance can be predicted using continuum theories for electrodiffusive flow coupled with boundary conditions for modelling chemical reactions and electrical double layers present at the bioelectronic interface of the ICS. Using the predictive model allows the concentration of analyte and surface reaction rates to be estimated from the current response of the ICS. To validate the predictive accuracy of the dynamic models, experimental measurement of streptavidin and ferritin analyte concentrations are performed using the ICS. Streptavidin is a useful example as the binding of streptavidin to biotin is one the strongest non-covalent bonds known in nature, and detection of the change in the concentration of ferritin can be linked to pathogenic infections or the presence of cancer.