Unsere Gruppe organisiert über 3000 globale Konferenzreihen Jährliche Veranstaltungen in den USA, Europa und anderen Ländern. Asien mit Unterstützung von 1000 weiteren wissenschaftlichen Gesellschaften und veröffentlicht über 700 Open Access Zeitschriften, die über 50.000 bedeutende Persönlichkeiten und renommierte Wissenschaftler als Redaktionsmitglieder enthalten.
Open-Access-Zeitschriften gewinnen mehr Leser und Zitierungen
700 Zeitschriften und 15.000.000 Leser Jede Zeitschrift erhält mehr als 25.000 Leser
Lodh A*
In this study, numerical experiments using regional climate model RegCM4.0 coupled with Biosphere-atmosphere transfer scheme (BATS) land surface model is used to explore the impact of afforestation on Indian climate viz. precipitation, surface fluxes. Since Kyoto Protocol and recently during COP21, it is widely accepted that afforestation is a solution to mitigate anthropogenic climate change and viable geo-engineering technique. There is dearth of regional climate modeling studies investigating afforestation over India and its impact on Indian monsoon meteorology. The control (CTL) regional climate model simulations over Cordex South Asia domain are initialized and driven by NCEP/ NCAR Reanalysis Project 2 (NNRP2) data for large deficient monsoon year (1987, 2009) and flood monsoon year (2010). The sensitivity simulations also consists of two design experiments “RBATS-F” and “RBATS-DB” for year 1987, 2009 and 2010, using “forest” and “deciduous broadleaf” type of land use change in original land use (USGS) map as proxy for afforestation in the model land use map. In response to afforestation, total and convective precipitation, precipitable water, convergence (2meter-temperature, air temperature) increases (decreases) over the afforested area in the model. But the active and weak phase of monsoon is not impacted by afforestation. During premonsoon season, precipitable water, convergence in water vapor flux, wind magnitude increases over afforested regions of India and the increase in precipitation over Central India is significant at 99% level significance. Analysis of other meteorological variables presented here.