Unsere Gruppe organisiert über 3000 globale Konferenzreihen Jährliche Veranstaltungen in den USA, Europa und anderen Ländern. Asien mit Unterstützung von 1000 weiteren wissenschaftlichen Gesellschaften und veröffentlicht über 700 Open Access Zeitschriften, die über 50.000 bedeutende Persönlichkeiten und renommierte Wissenschaftler als Redaktionsmitglieder enthalten.
Open-Access-Zeitschriften gewinnen mehr Leser und Zitierungen
700 Zeitschriften und 15.000.000 Leser Jede Zeitschrift erhält mehr als 25.000 Leser
Eddie Shakeshaft
Understanding urban areas as unpredictable frameworks, reasonable metropolitan arranging relies upon dependable high-goal information, for instance of the structure stock to upscale locale wide retrofit arrangements. For certain urban areas and locales, these information exist in nitty gritty 3D models dependent on certifiable estimations. Nonetheless, they are as yet costly to assemble and keep, a huge test, particularly for little and medium-sized urban areas that are home to most of the European populace. New strategies are expected to appraise important structure stock qualities dependably and cost-adequately. Here, we present an AI based strategy for foreseeing building statures, which depends just on open-access geospatial information on metropolitan structure, for example, building impressions and road organizations. The technique permits to foresee building statures for areas where no committed 3D models exist presently. We train our model utilizing building information from four European nations (France, Italy, the Netherlands, and Germany) and track down that the morphology of the metropolitan texture encompassing a given structure is profoundly prescient of the stature of the structure.