ISSN: 2157-7617

Zeitschrift für Geowissenschaften und Klimawandel

Offener Zugang

Unsere Gruppe organisiert über 3000 globale Konferenzreihen Jährliche Veranstaltungen in den USA, Europa und anderen Ländern. Asien mit Unterstützung von 1000 weiteren wissenschaftlichen Gesellschaften und veröffentlicht über 700 Open Access Zeitschriften, die über 50.000 bedeutende Persönlichkeiten und renommierte Wissenschaftler als Redaktionsmitglieder enthalten.

Open-Access-Zeitschriften gewinnen mehr Leser und Zitierungen
700 Zeitschriften und 15.000.000 Leser Jede Zeitschrift erhält mehr als 25.000 Leser

Indiziert in
  • CAS-Quellenindex (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Online-Zugriff auf Forschung in der Umwelt (OARE)
  • Öffnen Sie das J-Tor
  • Genamics JournalSeek
  • JournalTOCs
  • Ulrichs Zeitschriftenverzeichnis
  • Zugang zu globaler Online-Forschung in der Landwirtschaft (AGORA)
  • Zentrum für Landwirtschaft und Biowissenschaften International (CABI)
  • RefSeek
  • Hamdard-Universität
  • EBSCO AZ
  • OCLC – WorldCat
  • Proquest-Vorladungen
  • SWB Online-Katalog
  • Publons
  • Euro-Pub
  • ICMJE
Teile diese Seite

Abstrakt

Prediction of Inflow to the Ujjani Dam Reservoir using Linear Regression and Hybrid Model

Dattatray Rajmane

Assessment of impact of climate change is very essential for the areas where the water scarcity is the main issue. Ujjani dam one of the largest dams of Maharashtra state in India is constructed on Bhima River in 1980 which supplies water to downstream cultivable area of Solapur and Pune district. In this study statistical downscaling model was developed for downscaling and projecting the temperature and rainfall by considering the GFDL-CM3 (GCM) model under scenario RCP 6.0. Statistical downscaling models showed a very good correlation (R2) between NCEP predictors and hydro metrological predictands. Using the projected values of temperature and rainfall, inflow to the reservoir was predicted by developing the three different models namely; Multiple linear Regression, Artificial Neural Network and Wavelet Neural Network. The models were evaluated by using mean square error criteria. It is observed that there is a change in rainfall pattern, it increases in the months of September to December however it decreases in the months of June to August, and this is due to corresponding changes in rainfall. The inflow to the reservoir has been predicted in three different time period viz 2020-29, 2050-59 and 2080-89.

Haftungsausschluss: Dieser Abstract wurde mit Hilfe von Künstlicher Intelligenz übersetzt und wurde noch nicht überprüft oder verifiziert.