Unsere Gruppe organisiert über 3000 globale Konferenzreihen Jährliche Veranstaltungen in den USA, Europa und anderen Ländern. Asien mit Unterstützung von 1000 weiteren wissenschaftlichen Gesellschaften und veröffentlicht über 700 Open Access Zeitschriften, die über 50.000 bedeutende Persönlichkeiten und renommierte Wissenschaftler als Redaktionsmitglieder enthalten.
Open-Access-Zeitschriften gewinnen mehr Leser und Zitierungen
700 Zeitschriften und 15.000.000 Leser Jede Zeitschrift erhält mehr als 25.000 Leser
Jonah Ezekiel
Solar Radiation Management (SRM) is a proposed solution to climate change, which involves reflecting sunlight away from the Earth to cool the planet. Currently, the major proposed forms of accomplishing this are complicated, only theoretical, and fraught with negative external consequences. This project examines a novel approach to SRM: Introducing reflective particles to the surface of the ocean. Data was collected through experimentation with bodies of saltwater with variable quantities of a specific reflective compound, TiO2 (Titania), dispersed on the surface. The difference in the rate of temperature change when exposed to a constant thermal radiation source was measured. Thermodynamic and climate relationships and known values were then used to ultimately calculate the quantity of Titania that would be needed to counterbalance the radiative forcing effects of current and projected climate change. These results alongside other research were used to consider the external consequences of this form of SRM, and finally to consider its legitimacy in relation to conventional climate solutions and other SRM options. While more research is needed to make full conclusions, it was found that this method would likely be more expensive than other proposed SRM forms, though substantially less expensive than conventional emission reduction solutions, and that its external negative impact on the environment could be less pronounced than other SRM options.