ISSN: 2157-7617

Zeitschrift für Geowissenschaften und Klimawandel

Offener Zugang

Unsere Gruppe organisiert über 3000 globale Konferenzreihen Jährliche Veranstaltungen in den USA, Europa und anderen Ländern. Asien mit Unterstützung von 1000 weiteren wissenschaftlichen Gesellschaften und veröffentlicht über 700 Open Access Zeitschriften, die über 50.000 bedeutende Persönlichkeiten und renommierte Wissenschaftler als Redaktionsmitglieder enthalten.

Open-Access-Zeitschriften gewinnen mehr Leser und Zitierungen
700 Zeitschriften und 15.000.000 Leser Jede Zeitschrift erhält mehr als 25.000 Leser

Indiziert in
  • CAS-Quellenindex (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Online-Zugriff auf Forschung in der Umwelt (OARE)
  • Öffnen Sie das J-Tor
  • Genamics JournalSeek
  • JournalTOCs
  • Ulrichs Zeitschriftenverzeichnis
  • Zugang zu globaler Online-Forschung in der Landwirtschaft (AGORA)
  • Zentrum für Landwirtschaft und Biowissenschaften International (CABI)
  • RefSeek
  • Hamdard-Universität
  • EBSCO AZ
  • OCLC – WorldCat
  • Proquest-Vorladungen
  • SWB Online-Katalog
  • Publons
  • Euro-Pub
  • ICMJE
Teile diese Seite

Abstrakt

Rainfall Runoff Estimation Using GIS and SCS-CN Method for Awash River Basin, Ethiopia

Shimelis Sishah

Understanding hydrological behavior is an important part of effective watershed management and planning. Runoff resulted from rainfall is a component of hydrological behavior that is needed for efficient water resource planning. In this paper, GIS based SCS-CN runoff simulation model was applied to estimate rainfall runoff in Awash river basin. Global Curve Number (GCN250), Maximum Soil Water Retention (S) and Rainfall was used as an input for SCS-CN runoff simulation model. The final surface runoff values for the Awash river basin were generated on the basis of total annual rainfall and maximum soil water retention potential (S) of the year 2020. Accordingly, a runoff variation that range from 83.95 mm/year to a maximum of 1,416.75 mm/year were observed in the study region. Conversely, recently developed Global Curve Number (GCN250) data was tested with Pearson correlation coefficient to be used as an input for SCS-CN runoff simulation model. The results of validation show that, predicted runoff was well correlated with observed runoff with correlation coefficient of 0.9253. Furthermore, correlation analysis was performed to explain the relationship between mean annual rainfall and surface runoff. The relationship between these two variables indicates a strong linear relationship with correlation coefficient of 0.9873.

Haftungsausschluss: Dieser Abstract wurde mit Hilfe von Künstlicher Intelligenz übersetzt und wurde noch nicht überprüft oder verifiziert.