Unsere Gruppe organisiert über 3000 globale Konferenzreihen Jährliche Veranstaltungen in den USA, Europa und anderen Ländern. Asien mit Unterstützung von 1000 weiteren wissenschaftlichen Gesellschaften und veröffentlicht über 700 Open Access Zeitschriften, die über 50.000 bedeutende Persönlichkeiten und renommierte Wissenschaftler als Redaktionsmitglieder enthalten.

Open-Access-Zeitschriften gewinnen mehr Leser und Zitierungen
700 Zeitschriften und 15.000.000 Leser Jede Zeitschrift erhält mehr als 25.000 Leser

Abstrakt

Relationship Between Metabolism and Risk of Cardiovascular Disease and Stroke, Risk of Chronic Kidney Disease, and Probability of Pancreatic Beta Cells Self-Recovery Using GH-Method: Math-Physical Medicine (No 258 & 259)

Gerald C Hsu

The author uses GH-Method: math-physical medicine (MPM) approach to investigate his risk probability on metabolic disorder induced cardiovascular disease (CVD), stroke, or chronic kidney disease (CKD), as well as probability of pancreatic beta cells self-recovery. He addresses the damages caused by metabolic disorders affecting arteries and micro-vessels in terms of blockage, rupture, or leakage along with the probability assessment of pancreatic beta cells self-recovery. Furthermore, he uses mathematical correlations to distinguish the weighted impact by metabolism on heart, brain, kidney, and pancreas. These annualized big data analytics using four different sophisticated mathematical models for MI, CVD, CKD, and Pancreatic beta cells have demonstrated the close relationships between metabolism and two major chronic diseases induced complications, CVD/Stroke (heart/brain) and CKD (kidney), as well as the beta cells self-recovery rate. By using the GH-Method: MPM math-physical medicine approach (mathematics, physics, engineering modeling, and computer science), it can certainly attain similar conclusions without lengthy and expensive biochemical experiments performed in a laboratory.

Haftungsausschluss: Dieser Abstract wurde mit Hilfe von Künstlicher Intelligenz übersetzt und wurde noch nicht überprüft oder verifiziert.